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Heritability

* Is your favorite phenotype genetic?

« Heritability (h2) is the proportion of variance
attributed to genetic factors

— h?~100%: ABO Blood type, CF

— h2 > 80%: Height, BMI, Autism

— h? 50-80%: Smoking, Hypertension, Lipids

— h2 20- 50%: Marriage, Suicide, Religiousness
- h2~0:7?

Prior Hypotheses

There will always be too much data
There will (almost) always be priors

— Favored SNPs

— Favored Genes

Make sure you’ve stated your priors (if
any) explicitly BEFORE you look at the
data
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Statistical Power

* Null hypothesis: all alleles are equal risk

+ Given that a risk allele exists, how likely
is a study to reject the null?

* Are you ready to genotype?

Genetic Relative Risk

Disease
Disease Unaffected
SN Allele 1 Pip Py
Allele 2 Pp P,y
Pip

RR = p(Disease| Allelel) _ p,, + pyy

p(Disease| Allele2) Pip

Pap + Py

Power Analysis

« Statistical significance
— Significance = p(false positive)
— Traditional threshold 5%

« Statistical power
— Power = 1- p(false negative)
— Traditional threshold 80%

« Traditional thresholds balance confidence in results
against reasonable sample size

Small sample: 50% Power

95% c.i. unde
Distribution under H

Maximizing Power

- Effect size

— Larger relative risk = greater difference
between means

» Sample size

— Larger sample = smaller SEM
* Measurement error

— Less error = smaller SEM




Large sample: 97.5% Power

Risk Allele Example
10% Population Frequency

Homozygous
Relative Risk = 4
Multiplicative Risk
Model

* Homozygous
Relative Risk = 2

* Multiplicative Risk
Model

- HetRR=2 - HetRR=14
Case Freq » Case Freq

- 18.2% - 13.6%
Control Freq » Control Freq
—9.9% — 9.96%
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Power to Detect SNP Risk
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Power Analysis Summary

» For common disease, relative risk of
common alleles is probably less than 4

* Maximize number of samples for
maximal power

* For RR < 4, measurement error of more

than 1% can significantly decrease
power, even in large samples

SNP Selection for Association
Studies

Direct:
Catalog and test all functional variants for association

A4

Indirect:
Use dense SNP map and select based on LD

Collins, Guyer, Chakravarti (1997). Science 278:1580-81

Parameters for SNP Selection

Allele Frequency

Putative Function (cSNPs)

» Genomic Context (Unique vs. Repeat)

Patterns of Linkage Disequilibrium

Focus on Common Variants -
Haplotype Patterns

All Gene SNPs SNPs > 10% MAF

Why Common Variants?

» Rare alleles with large effect (RR > 4) should
already be identified from linkage studies

» Association studies have low power to detect
rare alleles with small effect (RR < 4)

* Rare alleles with small effect are not
important, unless there are a lot of them

* Theory suggests that it is unlikely that many
rare alleles with small effect exist (Reich and
Lander 2001).




Ethnicity

All Gene SNPs

BB B BB HEE

SNPs > 10% MAF

African
American

European
American

Replication

* You WILL be asked to replicate
« Statistical replication
— Split your sample
— Arrange for replication in another study
— Multiple measurements in same study
+ Functional replication

Multiple Measurements:
{ CRP in CARDIA
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* 5 SNPs specific to
high CRP haplotype

Functional Replication

« Statistical replication is not always
possible

+ Association may imply mechanism

+ Test for mechanism at the bench
— Is predicted effect in the right direction?

— Dissect haplotype effects to define
functional SNPs




CRP Evolutionary Conservation

» TATA box: 1697
» Transcript start: 1741

* CRP Promoter region (bp 1444-1650) >75%
conserved in mouse

Low CRP Associated with H1-4

FEN N

* USF1 (Upstream Stimulating Factor)
— Polymorphism at 1440 alters USF1 binding site

1420 1430 1440
H1-4 AC tggcCACTCGtE
H7-8 AC tggcCACTAGEE
H5-6 AC tggcCACTTGEE

High CRP Associated with H6

+ USF1 (Upstream Stimulating Factor)
— Polymorphism at 1421 alters another USF1 binding site
1420 1430 1440
H1-4 gcagctacCACGTGcacccagatggeCACTCGEE
H7-8 gcagctacCACGTGcacccagatggeCACTAGEE
H5  gcagctacCACGTGcacccagatggcCACTTGEE
H6  gcagctacCACATGcacccagatggcCACTTGEE

CRP Promoter Luciferase
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Study Design Summary

« State your priors

» Know your phenotypes
Estimate your power

+ Pay attention to ethnicity

Set up replication ASAP

* Replication can be functional




Data Analysis
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SNPs or Haplotypes

» There is no right answer: explore both

* The only thing that matters is the
correlation between the assayed
variable and the causal variable

+ Sometimes the best assayed variable is
a SNP, sometimes a haplotype

Example: APOE

Table 1
ApoE genotype frequency in US population and AD risk

Genotype Population® AD® #Population #AD  Risk® If all

(%) (%) (%) us
e2/2 1 01 0.5M 0.004M 0.08 0.4M
€2/3 12 4 5.5M 0.18M 32 15M
€3/3 60 35 27.6M 1.4M 5.1 23M
£3/4 21 42 S.6M 1L7M 18 82M
ed/d 2 16 0.9M 0.6M 67 30.7M

Please note that £2/e4 subjects are not included in table.
2 Using estimate of 46 million mm US over 60 /o m 2000.
b Assuming 4 nullion individuals have AD.
© Data from [13,46,49]

Raber et al, Neurobiology of Aging, v25 p641

Example: APOE

g 1 % é ¢ - Haplotype inferred with
0817950
23543

PHASE2
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2 + 7 SNPs with MAF >5%
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Example: APOE
i

» Small gene (<6kb)
* 7 SNPs with MAF > 5%

* APOE ¢2/e3/¢4
— Alzheimer’s associated
— 2 =4075
— ¢4 = 3937

Example: APOE

é g g % % é E}?J « 13 inferred haplotypes
43367

5
% * Only three meaningful
4 categories of haplotype
6
: * No single SNP is

10 adequate

11
12
13




Example: APOE

S 1%%3 * SNP analysis:
542%;? ~ 7 SNPs
— 7 tests with 1 d.f.

* Haplotype analysis
— 13 haplotypes
10 — 1 test with 12 d.f.

Example: APOE

T

Obhahg

éé » Best markeris a

7 E haplotype of only
the right two SNPs:
3937 and 4075

AL A WN R

11
12
13

Building Up

S 1%%3 » Test each SNP for
542%;; main effect

* Test SNPs with
main effects for
interactions

Paring Down

S 1%%3 » Test all haplotypes
542%;; for effects
1

9
10
11

12
13

AL AWN R

Paring Down

S 1%%3 » Test all haplotypes
542%;; for effects

* Merge related
haplotypes with
similar effect
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Exploring Candidate Genes:
Regression Analysis

Given

— Height as “target” or “dependent” variable

— Sex as “explanatory” or “independent”
variable

Fit regression model
height = B*sex + ¢

Regression Analysis

* Given

— Quantitative “target” or “dependent”
variable y

— Quantitative or binary “explanatory” or
“independent” variables x;

* Fit regression model
Y= BaXgt PoXo t o Pix te

Regression Analysis

Works best for normal y and x
Fit regression model

Y=EBaXg F BXp+ o F P e

» Estimate errors on f’s

+ Use t-statistic to evaluate significance of
p’s

» Use F-statistic to evaluate model overall

Regression Analysis

call:
Im(formula = data;

Median

Estimate S

139.52703
-0.04844

-3.125  23.629

+ data$CIGNOW +

Coding Genotypes

Genotype |Dominant |Additive Recessive
AA 1 2 1
AG 1 1 0
GG 0 0 0

» Genotype can be re-coded in any number of
ways for regression analysis

» Additive ~ codominant

Fitting Models

* Given two models
y=pBixste
Y= BaXqt BoXo t €

* Which model is
better?

* More parameters
will always yield a
better fit

* Information Criteria

— Measure of model fit
penalized for the number
of parameters in model

* AIC (most common)
— Akaike’s Info Criterion

» BIC (more stringent)
— Bayesian Info Criterion




Tool References

Haplo.stats (haplotype regression)
— Lake et al, Hum Hered. 2003;55(1):56-65.

» PHASE (case/control haplotype)
— Stephens et al, Am J Hum Genet. 2005 Mar;76(3):449-62

» Haplo.view (case/control SNP analysis)
— Barrett et al, Bioinformatics. 2005 Jan 15;21(2):263-5.

* SNPHAP (haplotype regression?)
— Sham et al Behav Genet. 2004 Mar;34(2):207-14.
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Population Stratification

* Many diseases have different
frequencies in ancestral groups

— E.g. MS is more frequent in Europeans
In admixed or stratified populations,
markers correlated with ancestry may
show spurious associations

— E.g. Duffy and MS in African Americans

Population Stratification

Admixture

— Individuals with ancestry from multiple populations
— E.g. Hispanic or African American

Stratification

— Subpopulations with distinct allele frequencies

— E.g. Brazil, California

STRUCTURE software

— Pritchard et al, Genetics v155 p945

Genomic Controls
» Unlinked anonymous markers not chosen for
known allele frequencies

+ Allow unbiased estimation of population
structure
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Genomic Controls

Europe
Warning: 377 K=3
microsatellites barely
detects European k=4
structure

Within continent k=5

resolution probably
requires thousands of K8
SNPs
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= Ancestry Informative
Markers (AlMs)

* Markers with known allele
frequency differences between
ancestral groups

+ E.g. Duffy blood group

+ Useful in estimating ancestry of
admixed individuals

* Only relevant to defined ancestral
populations

European

Admixture mapping

Type several thousand AlMs
Search for regions with excess allelic
ancestry from a single population

E.g. MS in AA: Reich et al, Nat Genet
v37 p1113

Pop Structure Summary

* For known admixture, use AlMs to
estimate ancestry

 For diseases with substantial
differences in risk by ethnicity, use
admixture mapping

+ Detecting cryptic population structure
requires hundreds to thousands of
genomic controls

Analyzing SNP Data
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Multiple Testing

Study target | Technology | Samples |Studies

Gene TagMan 100’s 2
10 SNPs

Pathway lllumina 1000s |2
1500 SNPs |SNPlex

Genome Affy ?? ??

500k SNPs |lllumina

Multiple Testing

Practical guidelines

— Write down your priors

— Bonferroni

- FDR

— Staged Study Design

— Other approaches - Neural Nets




Bonferroni

» P-values of stats assume a single test

» For multiple tests, adjust significance by
multiplying P-value by number of tests
— Given 10 tests and unadjusted p = 0.02
-p=10*0.02=0.2

» Over conservative

Step-Down Bonferroni

Given N SNPs to analyze
Order SNPs using prior info

— Evaluate the most interesting hypotheses
first

For first SNP, do not correct p-value
* For second SNP, adjust for 2 tests
« Etc.

Staged Study Design

Given 500,000 SNPs

Bonferroni corrected significance
threshold

p = 0.05 /500000 = 10”7

Significance in a single study is difficult
to achieve

Staged Study Design

« Study I: Genotype 500k SNPs in 1000 cases/controls
— Expect 5,000 false positives at p < 0.01
« Study II: Genotype best 5000 hits from stage | in additional 1000
cases/controls
— Expect 50 false positives at p < 0.01
« Study 3: Genotype best 50 hits in a third set of 1000
cases/controls
— Expect 0.5 false positives at p < 0.01

50% of samples in stage 1 (Tyympies = 0.50)
! Tmarkers = 010 Tmarkers = 0.05 Tmarkers = 001
08+
5§ 06
]
& 04
02
0d
010 025 050 010 025 050 010 025 050

Allele frequency Allle fraquency Allele frequency

30% of samples in stage 1 (Tyympies = 0.30)

Tmarkers = 0.10 Tmarkars = 0.05 Fmarkors = 001

010 025 050 010 025 050 010 025 050
Allee frequency Allele frequency Alele frequency
' Joint ® Replication

Skol et al, Nat Genet in press

Post-Hoc Analysis

« Significance
— Probability of a single observation under H,

» False Discovery Rate

— Proportion of observed results inconsistent
with H,

12



FDR Example

* Assume 10 tests

+ 5 with uncorrected p = 0.05
* No single significant result
* More than 5% below 5%

+ At least one of the five is probably real,
but we can’t say which

Multiple Testing Summary

» Bonferroni can be useful, but overly
conservative

FDR can be more helpful

Staged study designs don’t improve
power, but can be economically
advantageous

Analyzing SNP Data

+ Study Design

* SNPs vs Haplotypes

* Regression Analysis
Population Structure
Multiple Testing

Whole Genome Analysis

SNP Selection

cSNPs (~20-25k common genome
wide)

» tagSNPs

— 500k random = 300k selected

— Probably adequate in European

— Possibly adequate in Asian

— More needed for African (~750k)

— Possibly adequate in South Asian,
Hispanic

Case/Control WGAA

+ Allele Counting

— Assumes codominant
risk model

A1 A2
Case |py. Py

Control |p,. |p,.

x> =N(p,,p,. - p_P.)

+ Allele Counting

Case/Control WGAA

» Genotype Counting
— Assumes codominant — Allows for dominance

risk model — Not important for rare SNPs
A1 |A2 11 |12 |22
Case |Py,|Po. Case  |Pys+ |Pros |Poos
Control |p,. |p,. Control |p,,. |Pso. |Poo.

x> =N(p,p,. - P_P.)

13



Affymetrix's A
100K

Chip

Macular
Degeneration

Klein

Science 308:

385-

Analysis: S ot

P <0.05/

103,611
et al.

4.8 X107
389, 2005

100000

Frequency

Genotype. Genotype

Interaction Analysis

+ SNP X SNP
» Within gene: haplotype
— Modest interaction space

— Most haplotype splits do
not matter (APOE)

* SNP X Environment

— Smaller interaction
space (500k X a few
environmental
measures)

* Between genes:
epistasis
— Interaction space is vast
(500k X 500k)

Limiting the Interaction Space

Not all epistatic interactions make sense
— Physical interactions (lock and key)

— Physical interactions (subunit
stoichiometry)

— Pathway interactions
— Regulatory interactions

Whole Genome Summary

* Low Hanging Fruit exist (e.g. AMD)
+ Tier studies for economic purposes
— Make sure N is large enough to be powered if all
samples were 500k genotyped
* Interactions may be interesting
— Explore sparingly for hypothesis testing

— Explore comprehensively for hypothesis
generation

Conclusions

Pay attention to study design

— Sample size

— Estimated power

— Multiple Testing

Analyze SNPs (and haplotypes)
Keep population structure in mind
Explore epistasis and environmental
interactions after main effects

Limiting the Interaction Space

+ Not all epistatic interactions make sense
— Physical interactions (lock and key)

— Physical interactions (subunit
stoichiometry)

— Pathway interactions
— Regulatory interactions

14



Lock and Key

X

Stoichiometry

E.g. a and B globin in Thalassemia

Pathway

A B
o0&

Pathway output can integrate across all steps
within the pathway

BUT, many pathways have rate limiting step
which can erase upstream variation

Regulatory

Regulatory

Tx factor X Tx factor (500 X 500)
Tx factor X gene (10 X 500k)

Epistasis: SNP X SNP

Interactions
AA |AC/CC
OR 2
GG 1 2
GT/TT 2 2 4

Simple model: two dominant loci, two-fold relative risk
(RR) to single carriers at either locus, four-fold risk to
double carriers. Risk allele frequency 0.05 at both
loci.

15



Epistasis |: Synergistic

AA | AC/CC
OR 2.533
GG 1 2
GT/TT | 2.533 2 10

Simple model: two dominant loci, two-fold relative risk
(RR) to single carriers at either locus, more than four-
fold risk to double carriers. Risk allele frequency 0.05
at both loci.

Epistasis II: Permissive

AA | AC/CC
OR 1.878
GG 1 1
GT/TT | 1.878 1 10

Simple model: two dominant loci, no risk (RR) to
single carriers at either locus, more than four-fold risk
to double carriers. Risk allele frequency 0.05 at both
loci.

Epistasis IlI: Sufficient

AA | AC/CC
OR 1.822
GG 1 2
GT/TT | 1.822 2 2

Simple model: two dominant loci, two-fold relative risk
(RR) to single carriers at either locus, two-fold risk to
double carriers. Risk allele frequency 0.05 at both
loci.

Epistasis |V: Exclusive

AA | AC/CC
OR 1.733
GG 1 2
GT/TT |1.733 2 1

Simple model: two dominant loci, two-fold relative risk
(RR) to single carriers at either locus, no risk to
double carriers. Risk allele frequency 0.05 at both
loci.

Rare Allele Epistasis

* Main effects are the observed effects
analyzing one SNP at a time

* Main effects of rare alleles are not
substantially affected by epistatic
models

» Are common alleles more substantially
affected by epistasis?

Common Allele, No Epistasis

AA | AC/CC
OR 2
GG 1 2
GT/TT 2 2 4

Simple model: two dominant loci, two-fold relative risk
(RR) to single carriers at either locus, four-fold risk to
double carriers. Risk allele frequency 0.3 at both loci
(= risk genotype frequency 0.51 at either locus).

16



Epistasis |: Synergistic

AA | AC/CC
OR 4.026
GG 1 2
GT/TT | 4.026 2 10

Simple model: two dominant loci, two-fold relative risk
(RR) to single carriers at either locus, more than four-
fold risk to double carriers. Risk allele frequency 0.3
at both loci.

Epistasis II: Permissive

AA | AC/CC
OR 5.59
GG 1 1
GT/TT | 5.59 1 10

Simple model: two dominant loci, no risk (RR) to
single carriers at either locus, more than four-fold risk
to double carriers. Risk allele frequency 0.3 at both
loci.

Epistasis IlI: Sufficient

AA | AC/CC

OR 1.325
GG 1 2
GT/TT | 1.325 2 2

Simple model: two dominant loci, two-fold relative risk
(RR) to single carriers at either locus, two-fold risk to
double carriers. Risk allele frequency 0.3 at both loci.

Epistasis |V: Exclusive

AA | AC/CC
OR 0.987
GG 1 2
GT/TT |0.987 2 1

Simple model: two dominant loci, two-fold relative risk
(RR) to single carriers at either locus, no risk to
double carriers. Risk allele frequency 0.3 at both loci.

Main Effects Analysis

+ In the vast majority of epistatic models,
main effects exist, and point in the right
direction

« Epistatic interaction is potentially more
important for common alleles

+ Limit epistatic exploration to common
SNPs with main effects?
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